

LA-UR-21-28068

Approved for public release; distribution is unlimited.

Title: Evaluating New Double Perovskite Halide Scintillators for Radiation

Detection Applications

Author(s): Rutstrom, Daniel Joseph

Zhuravleva, Mariya

Mcclellan, Kenneth James

Intended for: NSSC-LANL 2021 Keepin Nonproliferation Program

Issued: 2021-08-11

Evaluating New Double Perovskite Halide Scintillators for Radiation Detection Applications

Daniel Rutstrom^{1,2}, Ken McClellan¹, Mariya Zhuravleva²

¹Los Alamos National Laboratory

Materials Science and Technology (MST) Division MST-8 Materials Science in Radiation and Dynamics Extremes

²University of Tennessee

LA-UR-XXXXXX

Summer Activities

White Rock Overlook

Meow Wolf (Santa Fe)

Daniel Rutstrom (MST-8)

- Educational Background
 - o B.S. in MSE, University of Tennessee, 2018
 - M.S. in MSE, University of Tennessee, 2021

Division

- Materials Science in Radiation and Dynamics Extremes (MST-8)
- Mentor: Ken McClellan

Daniel Rutstrom

Ken McClellan

Research

- o Experimental validation of machine learning based scintillator prediction models
- Discovery and development of advanced halide scintillators for gamma spectroscopy applications

Research Overview and Motivation

Objectives

- Provide experimental data to feed back in to models for high-throughput predictions of potential new scintillator materials
- o Identify promising scintillator compounds to pursue further

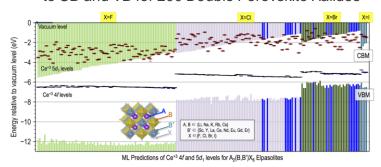
Research Overview and Motivation

Objectives

- Provide experimental data to feed back in to models for high-throughput predictions of potential new scintillator materials
- o Identify promising scintillator compounds to pursue further

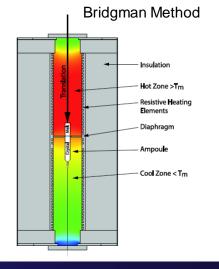
Motivation:

- Ideal scintillator does not exist, new materials with tailored properties are desired
- Discovery of new scintillator compounds can be lengthy and tedious
- Complimentary use of modeling and experimental work can provide a more efficient approach than conventional "trial and error" approach
 - → Rapid screening, vast chemical spaces
- Applications: gamma spectroscopy, flash radiography, etc.


Research Approach

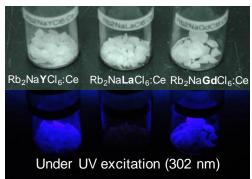
Fabrication of predicted new scintillators

- Selected a set of new compounds to pursue experimentally, based on calculated electronic band structures
- Compositional space double perovskite halides

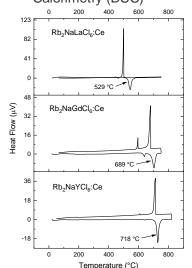

 A₂BB'X₆:Ce (A = Rb⁺, Cs⁺; B = Na⁺, K⁺; B' = RE³⁺; X = Cl⁻, Br⁻)
- · Fabrication method single crystal growth via Bridgman technique
- Characterization physical, optical, and scintillation properties

Positions of Ce³⁺ 5*d* and 4*f* energy levels relative to CB and VB for 200 Double Perovskite Halides

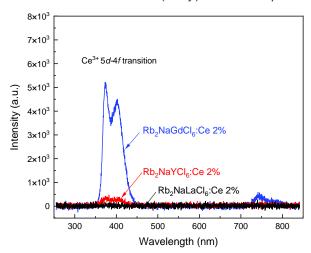
G. Pilania et al. "Physics-informed machine learning for inorganic scintillator discovery" J. Chem. Phys. 148, 241729 (2018)



Summary of Results


- Synthesized 3 new compounds
 - o Rb₂NaYCl₆:Ce
 - Rb₂NaLaCl₆:Ce
 - Rb₂NaGdCl₆:Ce
- All three compositions luminesce
- Rb₂NaGdCl₆:Ce is most promising, highest intensity emission
- Determined melting points via DSC (not reported in literature since these are new materials)
- In progress
 - Crystal growth
 - X-ray diffraction

Synthesized polycrystalline samples



Differential Scanning Calorimetry (DSC)

Radioluminescence (X-ray) Emission Spectra

